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Universal persistence exponents in an extremally driven system
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The local persistenc®(t), defined as the proportion of the system still in its initial state at timis
measured for the Bak-Sneppen model. For one and two dimensions, it is found that the de@dydefpends
on one of two classes of initial configuration. For a subcritical initial sta{¢)~t~?, where the persistence
exponentfd can be expressed in terms of a known universal exponent. Hénseuniversal. Conversely,
starting from a supercritical stat®(t) decays by the anomalous form-R(t) ~t"a! until a finite timet,,
wherer, is also a known exponent. Finally, for the high dimensional mét¢) decays exponentially with
a nonuniversal decay constant.
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Extremally driven systems represent an important class obpen subject. In many cases it is not universal; that is, it may
nonequilibrium models, with applications including sheareddepend on the lattice coordination number or the precise
granular media, biological macroevolution and interface dechoice of interaction ternj16,17. However, it has been
pinning [1—4]. Their defining characteristic is that they are found to be universal in directed percolatifit6]. We find
driven in the vicinity of arextremalguantity, often the mini- this also to be the case for the Bak-Sneppen model, and
mum or maximum of an inhomogeneous scalar field. suctgonfirm our numerical finding by deriving an expression for

deterministic dynamics can be naturally realized in the limit? In terms of the known universal exponent2]. We further
of vanishing (therma) noise [5—7]. Moreover, many ex- find that, when starting from a supercritical initial configura-

tremal models are also “critical” in an analogous sense to at'on’ R(t) decays in an anomalous, nonalgebraic manner. Fi-

continuous phase transition in equilibrium systeik nm:ﬂlr)ml’siségl gév;/zys decays exponentially in the infinite di-

However, the temporal evolution of these systems is in" " . Bak-Sneppen model is defined as follofgs3]. A
many cases not fully understood. Th_ls is clearly demo”'scalar quantityf, [0,1] is independently assigned to every
strated by recent work on one of the simplest, and therefor

. _ €itei of a d-dimensional hypercubic lattice, which contains a
most studied, extremally driven systems, namely, the Bakyia| of N sites. For every unit time, the smallest; in the

Sneppen moddB]. This has been shown tein a similar  gystem is found, and it and its nearest neighbors are assigned
manner to glassy systerfi8,10], suggesting that it does not ey values, again drawn uniformly frop@,1]. Other initial

reach a steady state in the time frame of current simulatiogonditions and interaction terms will be considered below. To
methods. This is in contrast to the usual claim that stationargenerate the random values of the we used L'Ecuyer’s

ity is reached “after an extensive transiefi8]. It now ap-  64-bit combined multiple recursive pseudo-random-number
pears that this contradiction arises because most studies org¢neratomrGek3a, which has a quoted period of’2[18].
measure functions of a single time variable, such as criticalhe typical number of operations required to find the global
exponents, etc., that can appear to become constant aftema@inimum was reduced fron@(N) to O(InN) by using a
finite time even for a nonstationary system; a true test obinary search tree, which also constrains the system size to
stationarity (such as the aging result mentioned ahoree  be a power of Z19].
quires the measurement of two-time correlation functions Typical results for a periodic one-dimensionaD) lattice
[11,12. are presented in Fig. 1. It can clearly be seen that the curves
The aim of this paper is to investigate one aspect of thef R(t) for different system sizes collapse after rescaling the
temporal behavior of the Bak-Sneppen model that has not yaime scale byN, for all N>2%~10?. For the largest system
been studied, in the hope that this will further elucidate theN= 22 the simulation time was long and only one run was
time evolution of extremally driven systems in general. Theperformed; however, for smaller systelRét) was averaged
quantity that we consider is the locpérsistence R), de-  over 10-100 different initial configurations. Also plotted in
fined as the proportion of the system at a tittbat has not the figure is the theoretical predictidR(t)oct™ % which
yet changed from its initial state. This quantity has been theavill be derived below. The numeric&i(t) appear to be con-
focus of considerable attention in recent years, at least in patierging toward this prediction at late times, but there is still
because it is often found to decay algebraically with a nona slight curvature to the line®n log-log axeseven for the
trivial persistence exponert, R(t)~constxt™ %, that (for  largestt we were able to simulate, making direct measure-
equilibrium systemscannot be related to either the static or ment of the exponent difficult.
dynamic exponertl3—16. The universality off remains an A similar picture emerges in two dimensions, as shown in
Fig. 2. The theoretical prediction in this caseRit) ot~ 243
(again, see below for detajilswhich is consistent with the
*Present address: Division of Physics and Astronomy, Vrije Uni-simulation data, although as before there is still some slight
versiteit, De Boelelaan 1081, NL-1081 HV Amselveen, The Neth-curvature toR(t) for the largestt available to our current
erlands. computing resources.
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FIG. 1. The persistencR(t) against the rescaled time variable  FIG. 3. R(t) for one-dimensional systems of size= 22! with
t/N for different system size=2", with n=12, 15, 18, and 21 as different interaction rules, to determine the universality of the per-
shown. The thin solid line has a slope 6f1.59. sistence exponent. See the main text for explanation of the terms
“2nd NN,” “Half NN,” and “Min to 1.” The solid line has a slope
The universality of the exponent was tested by alteringof —1.59.
the microscopic details of the interactions. Three alternative
rules were considered: updating the second nearest neighbors| et the mean duration of an avalanche at timee de-
as well as the nearest neighb¢t8nd NN's” ); changing the  noted by(S(t)), and the mean number of sites changed at
value of the nearest neighbors frdimto 3 (f;+r), where the |east once during the avalanche Qy\(t)), where the an-
annealed random variabteis uniformly distributed orf0,1]  gular brackets refer to averages over different initial configu-
(“Half NN” ); and setting the minimum value to 1 but chang-rations. By taking a suitably large system shtethese quan-
ing the nearest neighbors as norntallin to 17 ). In all  tities will increase by an arbitrarily small amount between
casest was found to be approximately the same. This hasavalanches, allowing the continuum limit to be taken. It is
been tested in both one and two dimensions; the 1D case khown that both quantities increase algebraically in tj@2le
shown in Fig. 3.

We shall now explain how the persistence exponent can t)\ 70D
be theoretically derived. This argument utilizes known re- <S(t)>~A(N> ' @
sults for the Bak-Sneppen model, which for reasons of space
will not be repeated here; the reader is instead referred to t\Yr-1)
[2,3,2Q for their justification. It is known that the location of (nco\/(t)>~B<N> (2

the minimum or “active” site initially jumps around the lat-
tice in an uncorrelated manner, but as the system evolves ”]-?ere, y is a universal exponent that depends on the lattice
lattice variables; become spatially correlated, and the aCtivedimensionality and the symmetries of the interactions. We
site tends to remain in a localized region of the lattice for 83ssumey>1: the case ofy=1, realized in high dimensions,
finite amount of time before jumping to another, uncorrelated,;;| pe discussed later.

region of the lattice. Each such period of localized activity is By defintion,R(t) =1 att=0 and decreases by an amount
known as an “avalanche.” 6R=1/N whenever a lattice site changes its value for the
first time. The average rate at which sites are changed by the

0
avalanches i$n . (t))/(S(t)); however, only a fractiofR(t)
At of sites have not already changed from their initial state.
Recalling that the active site jumps to a random part of the
_ 2t system between avalanché&¥t) obeys the following equa-
= tion:
|
$ dR(1) _ (Neoi())R(D) -
4| dt (SN
5 Subsituting Egs(1) and (2) into Eq. (3) gives
- L 1 L —~ -0
6 ’ . : . . R(t)~constxt 4
[ N . .
2910(tN) with the persistence exponefit= B/A.
FIG. 2. The persistenc®(t) for two-dimensional lattices of SinceA andB are nonuniversal constant prefactors to the
sizesN=2"x 2". The solid straight line has a slope ©2.43. The  algebraic growth ofS(t)) and (n¢\(t)), respectively, one
data were averaged over at least ten separate runs. would expect that their ratio, and therefdigis also nonuni-
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FIG. 4. The quantityt(n.,(t) /[ N{S(t))] against time for one- FIG. 5. R(t) for a random nearest neighbor model in which the
and two-dimensional lattices of size€*2and 21x 2% The argu- minimum and anothe — 1 sites chosen at random from the lattice
ment in the main text predicts that this will tend to a constant valueare assigned new values. The system contaMed®?! elements,
that is the persistence exponent. For comparison, horizontal solidndR(t) was averaged over 100 runs. The solid lines have slopes of
lines are plotted fow=1.59 and 2.43, which are the exponents for —0.83 and—1.65.
1D and 2D, respectively.

Finally, we consider the effects of initial conditions. All of
versal; however, a peculiar feature of this model is & the preceding analysis and numerical results has assumed an
is universal. This can be seen by combining together twanitial configuration in which eveny; is uniformly distrib-
exact equations, referred to as t@p andgammaequations uted over the rangl0,1]. This can be generalized by choos-
in [2], which gives the following equation relatingS(t))  ing an initial state in which thé; are uniformly distributed
and(ncy(t)): over the rangd fy,1] and are spatially uncorrelated. It is
known that the Bak-Sneppen model has a “critical value”
f.e(0,1) such that the system subcritical if fo<f., and
supercriticalif fo=f;[20]. (The value off is nonuniversal
and depends on the lattice structure and the microscopic in-
teraction term). We have checked that any subcritical initial
state gives rise to the same persistence exponent in both one
and two dimensions, as predicted by our earlier argument.
B y However, for a supercritical initial configuration, the system
A y—1" ®  entersinto a single, infinite avalanche, and all of the preced-

ing analysis fails. In factR(t) in this situation is simply
Sincey is universal, then so i8. In one and two dimensions, related to the growth of a single avalanche in time, which is
y=2.70 and 1.70, respective[], giving predicted values @already known to increase algebraically in time with a uni-

d(S(t)) (ncolt))
d N ®)

Substituting Eqs(1) and (2) into Eq. (5) gives the persis-
tence exponent as

6=

of #~1.59 and 2.43, which were the values used in Figs.
1-3. As a further check on this analysis, note that Efjs.

0

1D

T
+

x

A

and (2) predict that the quantity({nc,(t))/[N(S(t))] will 20
approach the constant vallBdA=6 at late times. This is At
confirmed by the numerical results presented in Fig. 4.
The preceding argument breaks down whenl, which
arises for dimensions above the upper critical dimensdign
for which the most recent estimateds=4 [21]. In this case,
(S(t)) and (ne(t)) both increase exponentially in time
rather than algebraicall\2]. By repeating the same steps as
above, it is straightforward to show th&{(t) should now 4r
decay exponentially with a nonuniversal decay cons@nt

o

log1ol 1-R(t) ]

- I I

R(t)~constx e .
(®) log1o( /N )

This is Conflrmgd by the .ngmerlcal results given in Fig. 5for £ 6. 1—R(t) versust/N for supercritical initial conditions in

a system in which the minimum and anotfiier- 1 randomly  which every element has a valdig=1 except for a single “seed”
chosen elements are assigned new values, which is the usugk that had..<1. The 1D data were obtained from a single run
way of simulating an infinite dimensional system for this on a 2° lattice, and the 2D data were averaged over 10 runs of a
model. It is clear that the decay Bft) is exponential with a 219x 210 Jattice. The solid lines give the known slopes af,
decay constant that depends stronglykon =0.42 in 1D and 0.70 in 2D.

027104-3



BRIEF REPORTS PHYSICAL REVIEW E 65 027104

versal exponent,, [2]. ThusR(t) does not decay algebra- provided a simple theoretical prediction for the valuefof

ically but rather according to the expression =vl(y—1), which, when combined with the numerical re-
sults, gives strong confirmation of the universality éof
1—-R(t)~consit™! (8 It is not yet clear how this relates to the question of the

. . . Y existence of a steady state of the model, although it is inter-
until a late tlmgto_when the avalar_u_:he tOUCh_eS |j[self esting to note tha®#>1 always, which is significantly higher
through the periodic boundary conditions. Confirmation Ofy, , typical persistence exponents, and means that the num-
this scaling is given in Fig. 6 for one and two dimensions. INber of untouched sites will rapidly decay to zero. Thus the
high dimensionsR(t) decays exponentially for both classes gpserved nonstationarity must be due to temporal correla-

of initial state. , ) tions within an avalanche, rather than the spread of ava-
We have found that the persisten&t) in the Bak- |5nches throughout the system.

Sneppen model can decay in one of three different ways. In

low dimensions, it decays with a universal exponénthen The author would like to acknowledge the hospitality of
starting from a subcritical state, but by the anomalous forrmthe Vrije Universiteit, Amsterdam, where part of this work
1—-R(t)xt™l when starting from a supercritical state. For was carried out. This work was funded by EPSRECK.)
high dimensions the decay is always exponential. We als&@rant No. GR/M09674.
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