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Universal persistence exponents in an extremally driven system
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The local persistenceR(t), defined as the proportion of the system still in its initial state at timet, is
measured for the Bak-Sneppen model. For one and two dimensions, it is found that the decay ofR(t) depends
on one of two classes of initial configuration. For a subcritical initial state,R(t);t2u, where the persistence
exponentu can be expressed in terms of a known universal exponent. Henceu is universal. Conversely,
starting from a supercritical state,R(t) decays by the anomalous form 12R(t);ttall until a finite time t0,
wheretall is also a known exponent. Finally, for the high dimensional modelR(t) decays exponentially with
a nonuniversal decay constant.

DOI: 10.1103/PhysRevE.65.027104 PACS number~s!: 05.70.Ln, 64.60.Ht
s
e
de
re

uc
i

o

i
on
fo
a

t
tio
a

o
ic
te
o

n

th
t y
th
h

th
pa
on

or

ay
ise

and
or

a-
Fi-
i-

ry
a

gned

To

ber

bal

e to

rves
the

as

in

till

re-

in

ghtni
th
Extremally driven systems represent an important clas
nonequilibrium models, with applications including shear
granular media, biological macroevolution and interface
pinning @1–4#. Their defining characteristic is that they a
driven in the vicinity of anextremalquantity, often the mini-
mum or maximum of an inhomogeneous scalar field. S
deterministic dynamics can be naturally realized in the lim
of vanishing ~thermal! noise @5–7#. Moreover, many ex-
tremal models are also ‘‘critical’’ in an analogous sense t
continuous phase transition in equilibrium systems@8#.

However, the temporal evolution of these systems is
many cases not fully understood. This is clearly dem
strated by recent work on one of the simplest, and there
most studied, extremally driven systems, namely, the B
Sneppen model@3#. This has been shown toage in a similar
manner to glassy systems@9,10#, suggesting that it does no
reach a steady state in the time frame of current simula
methods. This is in contrast to the usual claim that station
ity is reached ‘‘after an extensive transient’’@3#. It now ap-
pears that this contradiction arises because most studies
measure functions of a single time variable, such as crit
exponents, etc., that can appear to become constant af
finite time even for a nonstationary system; a true test
stationarity~such as the aging result mentioned above! re-
quires the measurement of two-time correlation functio
@11,12#.

The aim of this paper is to investigate one aspect of
temporal behavior of the Bak-Sneppen model that has no
been studied, in the hope that this will further elucidate
time evolution of extremally driven systems in general. T
quantity that we consider is the localpersistence R(t), de-
fined as the proportion of the system at a timet that has not
yet changed from its initial state. This quantity has been
focus of considerable attention in recent years, at least in
because it is often found to decay algebraically with a n
trivial persistence exponentu, R(t);const3t2u, that ~for
equilibrium systems! cannot be related to either the static
dynamic exponent@13–16#. The universality ofu remains an
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open subject. In many cases it is not universal; that is, it m
depend on the lattice coordination number or the prec
choice of interaction term@16,17#. However, it has been
found to be universal in directed percolation@16#. We find
this also to be the case for the Bak-Sneppen model,
confirm our numerical finding by deriving an expression f
u in terms of the known universal exponentg @2#. We further
find that, when starting from a supercritical initial configur
tion, R(t) decays in an anomalous, nonalgebraic manner.
nally, R(t) always decays exponentially in the infinite d
mensional case.

The Bak-Sneppen model is defined as follows@2,3#. A
scalar quantityf iP@0,1# is independently assigned to eve
site i of a d-dimensional hypercubic lattice, which contains
total of N sites. For every unit timet, the smallestf i in the
system is found, and it and its nearest neighbors are assi
new values, again drawn uniformly from@0,1#. Other initial
conditions and interaction terms will be considered below.
generate the random values of thef i , we used L’Ecuyer’s
64-bit combined multiple recursive pseudo-random-num
generatorMRG63k3a, which has a quoted period of 2377 @18#.
The typical number of operations required to find the glo
minimum was reduced fromO(N) to O(ln N) by using a
binary search tree, which also constrains the system siz
be a power of 2@19#.

Typical results for a periodic one-dimensional~1D! lattice
are presented in Fig. 1. It can clearly be seen that the cu
of R(t) for different system sizes collapse after rescaling
time scale byN, for all N.210'103. For the largest system
N5221, the simulation time was long and only one run w
performed; however, for smaller systemsR(t) was averaged
over 10–100 different initial configurations. Also plotted
the figure is the theoretical predictionR(t)}t21.59, which
will be derived below. The numericalR(t) appear to be con-
verging toward this prediction at late times, but there is s
a slight curvature to the lines~on log-log axes! even for the
largestt we were able to simulate, making direct measu
ment of the exponent difficult.

A similar picture emerges in two dimensions, as shown
Fig. 2. The theoretical prediction in this case isR(t)}t22.43

~again, see below for details!, which is consistent with the
simulation data, although as before there is still some sli
curvature toR(t) for the largestt available to our current
computing resources.

-
-
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The universality of the exponent was tested by alter
the microscopic details of the interactions. Three alterna
rules were considered: updating the second nearest neigh
as well as the nearest neighbors~‘‘2nd NN’s’’ !; changing the
value of the nearest neighbors fromf i to 1

2 ( f i1r ), where the
annealed random variabler is uniformly distributed on@0,1#
~‘‘Half NN’’ !; and setting the minimum value to 1 but chan
ing the nearest neighbors as normal~‘‘Min to 1’’ !. In all
casesu was found to be approximately the same. This h
been tested in both one and two dimensions; the 1D cas
shown in Fig. 3.

We shall now explain how the persistence exponent
be theoretically derived. This argument utilizes known
sults for the Bak-Sneppen model, which for reasons of sp
will not be repeated here; the reader is instead referre
@2,3,20# for their justification. It is known that the location o
the minimum or ‘‘active’’ site initially jumps around the lat
tice in an uncorrelated manner, but as the system evolves
lattice variablesf i become spatially correlated, and the acti
site tends to remain in a localized region of the lattice fo
finite amount of time before jumping to another, uncorrela
region of the lattice. Each such period of localized activity
known as an ‘‘avalanche.’’

FIG. 1. The persistenceR(t) against the rescaled time variab
t/N for different system sizesN52n, with n512, 15, 18, and 21 as
shown. The thin solid line has a slope of21.59.

FIG. 2. The persistenceR(t) for two-dimensional lattices of
sizesN52m32n. The solid straight line has a slope of22.43. The
data were averaged over at least ten separate runs.
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Let the mean duration of an avalanche at timet be de-
noted by^S(t)&, and the mean number of sites changed
least once during the avalanche by^ncov(t)&, where the an-
gular brackets refer to averages over different initial config
rations. By taking a suitably large system sizeN, these quan-
tities will increase by an arbitrarily small amount betwe
avalanches, allowing the continuum limit to be taken. It
known that both quantities increase algebraically in time@2#,

^S~ t !&;AS t

ND g/(g21)

, ~1!

^ncov~ t !&;BS t

ND 1/(g21)

. ~2!

Here,g is a universal exponent that depends on the lat
dimensionality and the symmetries of the interactions.
assumeg.1; the case ofg51, realized in high dimensions
will be discussed later.

By defintion,R(t)51 at t50 and decreases by an amou
dR51/N whenever a lattice site changes its value for t
first time. The average rate at which sites are changed by
avalanches iŝncov(t)&/^S(t)&; however, only a fractionR(t)
of sites have not already changed from their initial sta
Recalling that the active site jumps to a random part of
system between avalanches,R(t) obeys the following equa-
tion:

dR~ t !

dt
52

^ncov~ t !&R~ t !

^S~ t !&N
. ~3!

Subsituting Eqs.~1! and ~2! into Eq. ~3! gives

R~ t !;const3t2u ~4!

with the persistence exponentu5B/A.
SinceA andB are nonuniversal constant prefactors to t

algebraic growth of̂ S(t)& and ^ncov(t)&, respectively, one
would expect that their ratio, and thereforeu, is also nonuni-

FIG. 3. R(t) for one-dimensional systems of sizeL5221 with
different interaction rules, to determine the universality of the p
sistence exponent. See the main text for explanation of the te
‘‘2nd NN,’’ ‘‘Half NN,’’ and ‘‘Min to 1.’’ The solid line has a slope
of 21.59.
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BRIEF REPORTS PHYSICAL REVIEW E 65 027104
versal; however, a peculiar feature of this model is thatB/A
is universal. This can be seen by combining together t
exact equations, referred to as thegapandgammaequations
in @2#, which gives the following equation relatinĝS(t)&
and ^ncov(t)&:

d^S~ t !&
dt

5
^ncov~ t !&

N
. ~5!

Substituting Eqs.~1! and ~2! into Eq. ~5! gives the persis-
tence exponent as

u5
B

A
5

g

g21
. ~6!

Sinceg is universal, then so isu. In one and two dimensions
g52.70 and 1.70, respectively@2#, giving predicted values
of u'1.59 and 2.43, which were the values used in Fi
1–3. As a further check on this analysis, note that Eqs.~1!
and ~2! predict that the quantityt^ncov(t)&/@N^S(t)&# will
approach the constant valueB/A5u at late times. This is
confirmed by the numerical results presented in Fig. 4.

The preceding argument breaks down wheng51, which
arises for dimensions above the upper critical dimensiondc ,
for which the most recent estimate isdc54 @21#. In this case,
^S(t)& and ^ncov(t)& both increase exponentially in tim
rather than algebraically@2#. By repeating the same steps
above, it is straightforward to show thatR(t) should now
decay exponentially with a nonuniversal decay constantC,

R~ t !;const3e2Ct. ~7!

This is confirmed by the numerical results given in Fig. 5
a system in which the minimum and anotherK21 randomly
chosen elements are assigned new values, which is the u
way of simulating an infinite dimensional system for th
model. It is clear that the decay ofR(t) is exponential with a
decay constant that depends strongly onK.

FIG. 4. The quantityt^ncov(t)&/@N^S(t)&# against time for one-
and two-dimensional lattices of sizes 221 and 2113210. The argu-
ment in the main text predicts that this will tend to a constant va
that is the persistence exponent. For comparison, horizontal s
lines are plotted foru51.59 and 2.43, which are the exponents f
1D and 2D, respectively.
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Finally, we consider the effects of initial conditions. All o
the preceding analysis and numerical results has assume
initial configuration in which everyf i is uniformly distrib-
uted over the range@0,1#. This can be generalized by choo
ing an initial state in which thef i are uniformly distributed
over the range@ f 0,1# and are spatially uncorrelated. It i
known that the Bak-Sneppen model has a ‘‘critical valu
f cP(0,1) such that the system issubcritical if f 0, f c , and
supercritical if f 0> f c @20#. ~The value off c is nonuniversal
and depends on the lattice structure and the microscopic
teraction term.! We have checked that any subcritical initi
state gives rise to the same persistence exponent in both
and two dimensions, as predicted by our earlier argum
However, for a supercritical initial configuration, the syste
enters into a single, infinite avalanche, and all of the prec
ing analysis fails. In fact,R(t) in this situation is simply
related to the growth of a single avalanche in time, which
already known to increase algebraically in time with a u

e
lid

FIG. 5. R(t) for a random nearest neighbor model in which t
minimum and anotherK21 sites chosen at random from the lattic
are assigned new values. The system containedN5221 elements,
andR(t) was averaged over 100 runs. The solid lines have slope
20.83 and21.65.

FIG. 6. 12R(t) versust/N for supercritical initial conditions in
which every element has a valuef i51 except for a single ‘‘seed’’
site that hasf seed,1. The 1D data were obtained from a single ru
on a 216 lattice, and the 2D data were averaged over 10 runs o
2103210 lattice. The solid lines give the known slopes oftall

50.42 in 1D and 0.70 in 2D.
4-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 027104
versal exponenttall @2#. ThusR(t) does not decay algebra
ically but rather according to the expression

12R~ t !;const3ttall ~8!

until a late time t0 when the avalanche ‘‘touches’’ itse
through the periodic boundary conditions. Confirmation
this scaling is given in Fig. 6 for one and two dimensions.
high dimensions,R(t) decays exponentially for both class
of initial state.

We have found that the persistenceR(t) in the Bak-
Sneppen model can decay in one of three different ways
low dimensions, it decays with a universal exponentu when
starting from a subcritical state, but by the anomalous fo
12R(t)}ttall when starting from a supercritical state. F
high dimensions the decay is always exponential. We a
.
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f
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provided a simple theoretical prediction for the value ofu
5g/(g21), which, when combined with the numerical r
sults, gives strong confirmation of the universality ofu.

It is not yet clear how this relates to the question of t
existence of a steady state of the model, although it is in
esting to note thatu.1 always, which is significantly highe
than typical persistence exponents, and means that the n
ber of untouched sites will rapidly decay to zero. Thus t
observed nonstationarity must be due to temporal corr
tions within an avalanche, rather than the spread of a
lanches throughout the system.
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